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Stochastic processes and conformal invariance
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We discuss a one-dimensional model of a fluctuating interface with a dynamic exponentz51. The events
that occur are adsorption, which is local, and desorption which is nonlocal and may take place over regions of
the order of the system size. In the thermodynamic limit, the time dependence of the system is given by
characters of thec50 logarithmic conformal field theory of percolation. This implies in a rigorous way, a
connection between logarithmic conformal field theory and stochastic processes. The finite-size scaling behav-
ior of the average height, interface width and other observables are obtained. The avalanches produced during
desorption are analyzed and we show that the probability distribution of the avalanche sizes obeys finite-size
scaling with new critical exponents.
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The structure of growing interfaces continues to be a s
ject of major interest and a characterization of the vario
universality classes of critical behavior remains an op
question@1#. In this paper, we present a one-dimensio
adsorption-desorption model of a fluctuating interface, wh
belongs to a new universality class where the dynam
critical exponentz51. In this model, the interface evolve
following nonlocal Markovian dynamics~for an adsorption-
desorption model with local dynamics andz.2 see Ref.
@2#!. The relaxation rules are such that one has avalanc
with a long tail in their probability distribution function
~PDF!. The model belongs, therefore, to the self-organiz
criticality class~SOC! @3–5#. What makes the model speci
is that the correlation lengths in the time and space direct
are both proportional to the size of the system~this is not the
case for other SOC models@4,6#!. The single scale that exist
in the system is therefore its size. Moreover, our model
the big advantage of being solvable.

The Hamiltonian that gives the time evolution of o
model is integrable. The finite-size scaling~FSS! limit of its
spectrum can be obtained using the Bethe ansatz@7# and is
given by characters of ac50 Virasoro algebra. A logarith-
mic conformal field theory~LCFT! with c50 @8# appears
also in other domains of physics such as systems w
quenched disorder and the quantum Hall effect@9#, and pos-
sibly string theory@10#. Moreover@11#, the PDF describing
the stationary state is related to combinatorial aspects of
ice model defined on a rectangle with special boundary c
ditions. This is probably the reason why we are able to c
jecture exact expressions for various quantities connecte
the model even for finite lattices.

We consider an interface on a one-dimensional lattice
size L11 (L52n!. The non-negative heightshi ( i
50,1, . . . ,L) that specify the interface, obey restricted sol
on-solid ~RSOS! rules,

hi 112hi561, h05hL50, hi>0. ~1!

Alternatively, we can describe the interface using slope v
ables si5(hi 112hi 21)/2, (s05sL50). The interface
1063-651X/2003/67~1!/016101~4!/$20.00 67 0161
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evolves through adsorption and desorption according to
following rules. Adsorption, which locally changes th
height hi to hi12, takes place with a rate equal to 1 at
local minimum of the interface„si50, hi,(hi 21 ,hi 11)….
The nonvanishing rates for desorption can be understood
ing the notion of active segments. A segment of a configu
tion with the end pointsa andb is defined by the conditions
ha5hb5h andhi.h for a, i ,b. We call a segment active
if at least one of the boundary slopessa or sb is nonzero. In
the desorption event, all theb2a21 heightshi contained in
a segment decrease by two units (hi °hi22) with a rate

d~sa21!1d~sb11!, ~2!

where d is the discrete Kronecker symbol, the oth
heights remaining unchanged. In order to find which d
sorption events can take place, for each of theCn5(2n)!/
@(n11)(n!) 2# configurations, one first looks at how man
active segments one has and then one uses Eq.~2!. If the two
slopessa and sb are zero, the desorption rate is zero. Th
observation has two consequences. First, in the statio
state, we expect to see predominantly configurations w
large terraces, i.e., intervals where the slope is zero for all
sites. Next, it is meaningful to consider clusters. Those
segments, where the end points have the heights equ
zero. According to the rules~2!, desorption takes place onl
within a cluster.

The dynamics of the interface can easily be visualiz
using tiles~tilted squares!, which cover the area between th
interface and the substrate (h2i50, h2i 1151). For a given
configurationc, the number of tiles isu(c)5 1

2 ( i 52
L22hi11

2L/4. According to the rules given above, through adso
tion one adds one tile, through desorption one loses a la
with b2a21 tiles ~this is an odd number!. If one looks at
our model from the point of view of self-organized critic
phenomena, the number of tilesu lost in a desorption even
defines the size of an avalanche.
©2003 The American Physical Society01-1
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The physics of our model can be understood in the
lowing way. We have a gas of tiles in the presence o
surface. Tiles uniformly try to attach to the interface and
succesful on sites that are lower than their neighbors. T
get reflected back into the gas on sites that are higher
their neighbors and trigger desorption events and are
flected on local slopes. Because the stationary state ma
consists of terraces, desorption events occur less freque
but when they occur, they can take larger number of tile

Before describing the physical properties of the mod
we will give another formulation which enables us to obta
the FSS spectrum of the Hamiltonian, defined by the ra
given above, and thus to find the dynamic exponent. To e
RSOS configuration withL11 sites one can associate a co
figuration of n nonintersecting half loops onL52n sites.
The heighthi is the number of half loops above the midpoi
of the sitesi and i 11 in the half loop configuration. Fo
example, the following picture illustrates the association
tween a configuration with three half loops and anL56
RSOS configuration with two clusters and one tile,

~3!

The half-loop configurations on the other hand, can be a
ciated with the left ideal of the Temperley Lieb~TL! algebra
at Q51 @12#. TheL21 generators of the algebra satisfy t
relations

ei
25ei , eiei 61ei5ei , @ei ,ej #50, u i 2 j u.1 ~4!

and have the graphical representation

~5!

The left ideal is generated by the action of TL generators
I 05) i 51

n e2i 21. For example, the action ofe3 on the half-
loop configuration~3! is

~6!

The Hamiltonian gives the time evolution in the vector spa
of the half-loop~RSOS! configurations,

H5 (
j 51

L21

~12ej !,
d

dt
Pc~ t !52(

d
HcdPd~ t !. ~7!

Pc(t) is the~unnormalized! probability to find the system in
the configurationc at the timet and r cd52Hcd give the
rates of our model for the transitionsd→c. SinceH is an
intensity matrix ((cHcd50) @11#, it has a zero eigenvalu
with a trivial bra and a nontrivial ket, which gives the pro
abilities in the stationary state,
01610
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^0uH50, ^0u5~1,1, . . . ,1!,
~8!

Hu0&50, u0&5(
c

Pcuc&, Pc5 lim
t→`

Pc~ t !.

Let us compute the dynamic critical exponentz. We use the
following representation of the TL algebra:

ei5
1
4 2 1

2 @~s i
xs i 11

x 1s i
ys i 11

y 2Ds i
zs i 11

z !1h~s i
z2s i 11

z !#,
~9!

wheresx,sy,sz are Pauli matrices,22D5q1q2151, 2h
5q2q215 iA3, and q5ep i/3. In this representation,H
given by Eq.~7! becomes the Hamiltonian of theXXZ quan-
tum chain @13# with L sites and the energy gapsEk ~the
ground-state energy is zero for anyL) scale like

Ek5pvsxkL
2z, ~10!

with z51, vs53A3/2 is the sound velocity@7#, andxk are
related to surface exponents of ac50 LCFT of percolation
@14#. In the continuum limit, the spectrum of the Hamiltonia
~7!, and thus the values ofxn , in the full TL algebra is given
by the Virasoro characters@14#

xs~w!5ws(2s21)/3~12w2s11!)
k51

`

~12wk!21. ~11!

Here, w5exp(pTvs/L) parametrizes the temporal~T! and
spatial~L! extent of the stochastic process. In the subspac
the RSOS configurations, the spectrum is given byx0(w).
To our knowledge, for the first time, a connection is ma
between stochastic processes and LCFT. This implies am
other things that the space and time correlation lengths
the same and that, in the continuum limit, the forms of t
space-time correlation functions in the stationary state
known @15#.

As discussed in detail in Ref.@11#, the stationary state o
our model withL sites is related to the two-dimensional ic
model @16# defined on a rectangle of dimensionL3(L
21)/2 with special boundary conditions@17,18#. This model
is equivalent to a fully packed loop~FPL! model@19# on the
rectangle, all configurations being equally probable. W
briefly explain this connection and its consequences. If
choose the~unnormalized! probability of the ‘‘pyramid’’ con-
figuration (s15•••5sn2151, sn50, L52n) to be equal to
1 ~this configuration has the smallest probability! then the
normalization factor of the stationary state@20# is equal to

^0u0&5 )
j 50

n21

~3 j 12!
~2 j 11!! ~6 j 13!!

~4 j 12!! ~4 j 13!!
. ~12!

This is preciselyAV(2n11), the number of configuration
of the FPL model on the rectangle. Moreover, the~unnormal-
ized! probabilities for the other half-loop configurations a
integer numbers, which are equal to the numbers of confi
rations of the FPL model with the external occupied edg
connected in the same way as in the configuration of h
1-2
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loops @21,11#. This implies that the PDF describing the st
tionary distribution in the RSOS configurations space co
sponds to a uniform probability distribution in the space
the FPL model, or equivalently the ice model. The RS
configuration with the largest~unnormalized! probability is
the one with the longest terrace (s15•••5sL50), in which
the interface coincides with the substrate. The normali
PDF is, obviously,pc5Pc /^0u0&.

We now describe some properties of the model. Th
were obtained either numerically for lattice sizes up toL
518 or an exact expression was conjectured and checke
to L518. We start with the properties of the stationary sta
The fraction of the interface covered by terraces@22# is

t~L !5
1

L21 (
j 51

L21

^12usj u&5
3L222L12

~L21!~4L12!
. ~13!

This implies that for largeL, three quarters of the surface
covered by terraces. We now consider the number of clus
per configurationC5( j 51

L d(hj ). Its average and the ave
age of its square have the following expressions:

^C&5
1

3)
j 50

n21
~2 j 11!~3 j 14!

~ j 11!~6 j 11!
2

1

3
'0.738L2/3, ~14!

^C2&'~1.2920.49L20.63!^C&2. ~15!

From Eq.~15!, we deduce that the compressibility@23# of the
gas of clustersk'0.29L diverges like the size of the system

The average height̂h̄& and interface widthw` , which
characterizes the roughness of the surface in the statio
state,

hm̄5
1

L (
i 51

L

hi
m , w`5A^h 2̄2h̄ 2& ~16!

are compatible with the following behavior:

^h̄&'0.14 ln~L/2!, w`'0.34~ ln L/2!1/3. ~17!

This implies that the PDF of the heights has a very sm
dispersion and also that the usual exponents@1# a5b van-
ish. As in any fit involving logs, the formulas given in Eq
~17! are probably not the last word. What is certain is that
width grows slowly with the size of the system implying th
the surface is only marginally rough. It is interesting to me
tion that marginally rough surfaces~with z51.581 corre-
sponding to the directed percolation universality class! were
also encountered@24# at a critical point dividing a moving
rough Kardar-Parisi-Zhang phase from a smooth, mas
phase. In these models, a factor 3 between the powers o
logs @like in Eq. ~17!# was also seen@25#. The factor 3 is
typical of a large class of growth problems@26#. To complete
the interface growth picture, we calculated the ratio of
time dependent interface widthw(t,L) to w` for various
lattice sizes. The curves were obtained by solving on a c
puter the differential equations~7! taking the substrate as th
initial configuration. Ifz51 and if the Family-Vicsek scaling
01610
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applies, this ratio should converge to a function oft/L. We
have checked that this is indeed the case.

We now consider the avalanches in our model. If in t
stationary state, one considers the configurationd with u(d)
tiles, it changes with rater cd into the configurationc with
u(c) tiles. The rate of changes, in whichu tiles are lost can
be written as

R~u,L !5 (
cÞd

d@u~d!2u~c!2u#r cdpd . ~18!

We have found the following values for the rate of adso
tion of one tile,R(u521,L), and the rate of all possible
avalanches,R(u.0,L):

R~21,L !5
3L~L22!

4~2L11!
, ~19!

R~u.0,L !5L2222R~21,L !. ~20!

Notice that for largeL, the rate for the adsorption of one til
(u521) is 3/2 times larger than the rate for an avalanc
(u.0). This explains the relative rarity of the desorptio
events.

Since through desorption, one loses an odd numbe
tiles, it is convenient to writeu52v21 and to considerv as
the size of an avalanche. Given the occurrence of an a
lanche, its sizev is distributed according to the PDF,

S~v,L !5
R~2v21,L !

R~u.0,L !
. ~21!

FSS@4# predicts the following form for this PDF:

S~v,L !5v2tF~v/LD!. ~22!

One way to get the exponents of the FSS function is
consider the moments@27#,

^vk&5 (
v51

vkS~v,L !;Ls(k), ~23!

and one expects

FIG. 1. Avalanche scaling functionF(v/L). The data are ob-
tained forv.1 andL58, . . .,18.
1-3
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s~k!5H 0, k,t21

D~k112t!, k.t21.
~24!

From Eq.~20!, one getŝ v&5(5L14)/4(L12), which im-
plies that for largeL the average size of an avalanche is 3
tiles. A numerical investigation of the other moments for
<k<5 indicatess(k)5k22. This implies D51 and t
'3. The numerics can be quite precise even if we have d
for L up to 18. This is because we knowS(v,L) exactly and
we can use Van den Broeck–Schwartz approximants@28# to
derive the largeL behavior of the moments~the convergence
is less good arounds(k)50 due to logarithmic effects!. The
value D51 was to be expected sinceL is the only charac-
teristic length in our system. A consistency check was d
assumingD51 in Eq. ~22! to see, for which value oft one
gets data collapse for the scaling functionF(v/L). Since we
have data up toL518 only, we cannot expect a precise val
of t nor of F. Nevertheless, as shown in Fig. 1, a data c
lapse is visible fort53.2.

To conclude, we have presented an SOC model of a c
cal fluctuating interface belonging to a new universal
le

nd

er

.I.

P.A
s.
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class. We have also shown the connection between the m
and a LCFT withc50, which among other things implie
that the dynamic exponentz51. Several FSS exponents o
expectation values have been computed in the station
state but their identification with the scaling dimensions
the LCFT has not been completed. The FSS exponents o
avalanche PDF have also been determined. Much is sti
be understood in this model, such as correlation functi
and its off-critical behavior. We hope to come back to the
topics in a future publication.
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