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Stochastic processes and conformal invariance
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We discuss a one-dimensional model of a fluctuating interface with a dynamic exmen&ntThe events
that occur are adsorption, which is local, and desorption which is nonlocal and may take place over regions of
the order of the system size. In the thermodynamic limit, the time dependence of the system is given by
characters of the=0 logarithmic conformal field theory of percolation. This implies in a rigorous way, a
connection between logarithmic conformal field theory and stochastic processes. The finite-size scaling behav-
ior of the average height, interface width and other observables are obtained. The avalanches produced during
desorption are analyzed and we show that the probability distribution of the avalanche sizes obeys finite-size
scaling with new critical exponents.
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The structure of growing interfaces continues to be a subevolves through adsorption and desorption according to the
ject of major interest and a characterization of the variougollowing rules. Adsorption, which locally changes the
universality classes of critical behavior remains an operheighth; to h;+2, takes place with a rate equal to 1 at a
question[1]. In this paper, we present a one-dimensionaliocal minimum of the interfacgs;=0, h;<(h,_;,hi;,)).
adsorption-desorption model of a fluctuating interface, whichrhe nonvanishing rates for desorption can be understood us-
belongs to a new universality class where the dynamicajhg the notion of active segments. A segment of a configura-
critical exponenz=1. In this model, the interface evolves tjon with the end points andb is defined by the conditions:
followmg nonlocal M_arkowan dynam_lce‘or an adsorption- h,=h,=h andh;>h for a<i<b. We call a segment active
desorption model with local dynamics ad-2 see Ref. it ot jeast one of the boundary slopesor s, is nonzero. In
[2]). The relaxation rules are such that one has avalanchetﬁe desorption event, all the—a— 1 heightsh, contained in

with a long tail in their probability distribution function : e .
(PDP. The model belongs, therefore, to the self—organizeoa segment decrease by two unitg (>h; —2) with a rate

criticality class(SOQ [3-5]. What makes the model special

is that the correlation lengths in the time and space directions
are both proportional to the size of the systéhis is not the
case for other SOC moddl4,6]). The single scale that exists

in the system is therefore its size. Moreover, our model has ) )
the big advantage of being solvable. where & is the discrete Kronecker symbol, the other

The Hamiltonian that gives the time evolution of our heights remaining unchanged. In order to find which de-
model is integrable. The finite-size scalitf§S9 limit of its ~ sorption events can take place, for each of @ye=(2n)!/
spectrum can be obtained using the Bethe an@tand is  [(n+1)(n!)?] configurations, one first looks at how many
given by characters of a=0 Virasoro algebra. A logarith- active segments one has and then one use&kdf the two
mic conformal field theoryLCFT) with c=0 [8] appears slopess, ands, are zero, the desorption rate is zero. This
also in other domains of physics such as systems witlobservation has two consequences. First, in the stationary
quenched disorder and the quantum Hall eff&t and pos- state, we expect to see predominantly configurations with
sibly string theory{10]. Moreover[11], the PDF describing large terraces, i.e., intervals where the slope is zero for all the
the stationary state is related to combinatorial aspects of thgites. Next, it is meaningful to consider clusters. Those are
ice model defined on a rectangle with special boundary consegments, where the end points have the heights equal to
ditions. This is probably the reason why we are able to conzero. According to the rule®), desorption takes place only
jecture exact expressions for various quantities connected twithin a cluster.

8(s,— 1)+ 8(sp+1), (2

the model even for finite lattices. The dynamics of the interface can easily be visualized
We consider an interface on a one-dimensional lattice ofising tiles(tilted squares which cover the area between the
size L+1 (L=2n). The non-negative heightsh; (i interface and the substratb,{=0, h,; ,1=1). For a given
=0,1, ... L) that specify the interface, obey restricted solid- configurationc, the number of tiles isi(c)=3=""7h;+1
on-solid (RSOS rules, —L/4. According to the rules given above, through adsorp-
tion one adds one tile, through desorption one loses a layer
hi.,—hj==1, hy=h =0, h;=0. 1) with b—a—1 tiles (this is an odd numberIf one looks at

our model from the point of view of self-organized critical
Alternatively, we can describe the interface using slope variphenomena, the number of tiledost in a desorption event
ables s;=(h;.1—h;i_1)/2, (sp=s.=0). The interface defines the size of an avalanche.
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The physics of our model can be understood in the fol- (0|H=0, (0|=(1,1,...,D,
lowing way. We have a gas of tiles in the presence of a (8)
surface. Tiles uniformly try to attach to the interface and are
succesful on sites that are lower than their neighbors. Tiles H|0)=0, [0)=2 Pclc), Pc=IlimPg(t).
get reflected back into the gas on sites that are higher than ¢ t=ee

their neighbors and trigger desorption events and are re- L
flected on local slopes. Because the stationary state main t us compute the d_ynamlc critical expor)enWe use the
consists of terraces, desorption events occur less frequentl ,Ilowmg representation of the TL algebra:
but when they occur, they can take larger number of tiles.
Before describing the physical properties of the model,
we will give another formulation which enables us to obtain
the FSS spectrum of the Hamiltonian, defined by the rate§hore o* oY
given above, and thus to find the dynamic exponent. To each
RSOS configuration with + 1 sites one can associate a con-
figuration of n nonintersecting half loops oh=2n sites.
The heighth; is the number of half loops above the midpoint
of the sitesi andi+1 in the half loop configuration. For
example, the following picture illustrates the association be-
tween a configuration with three half loops and lar6

RSOS configuration with two clusters and one tile, with z=1, v=3/3/2 is the sound velocitj7], andx, are
related to surface exponents ot& 0 LCFT of percolation

[14]. In the continuum limit, the spectrum of the Hamiltonian
m (7), and thus the values of, , in the full TL algebra is given

2 3 4 5 6 0123456 by the Virasoro charactefd 4]

_1_1
=172 [(U?(‘T?(Jrl"'O'iyo'iy+1_A‘7izo'iZ+1)+h(O'iZ_O'iZJrl)]’

(€)

o’ are Pauli matrices; 2A=q+q 1=1, 2h
=q—q l—|\/§ and q=€™3. In this representationH
given by Eq.(7) becomes the Hamiltonian of th€XZ quan-
tum chain[13] with L sites and the energy gafs, (the
ground-state energy is zero for ahy scale like

Ek: WUSXkL_Z, (10)

The half-loop configurations on the other hand, can be asso-
ciated with the left ideal of the Temperley Li€bL) algebra
atQ=1 [12]. TheL—1 generators of the algebra satisfy the

XS(W)zws(Zsf 1)/3(1_W23+ 1)H (1_Wk)fl_ (11)
k=1

relations Here, w=exp(#Tvs/L) parametrizes the temporél) and
spatial(L) extent of the stochastic process. In the subspace of
ef:ei, ee.16=¢€, [e,8]=0, [i—j|>1 (4 the RSOS configurations, the spectrum is givenxggw).
To our knowledge, for the first time, a connection is made
and have the graphical representation between stochastic processes and LCFT. This implies among

other things that the space and time correlation lengths are
-/ . ‘ the same and that, in the continuum limit, the forms of the
'S l e ) space-time correlation functions in the stationary state are

1 2 i—1 ¢ i+14+2 L-1 L known[15].
As discussed in detail in Reff11], the stationary state of

The left ideal is generated by the action of TL generators oy,r model withL sites is related to the two-dimensional ice
lo=TI{_,€5—1. For example, the action a; on the half-  mogel [16] defined on a rectangle of dimensidnx (L
loop configuration(3) is —1)/2 with special boundary condition$7,18. This model
is equivalent to a fully packed loof=PL) model[19] on the
rectangle, all configurations being equally probable. We

€; = |

]

N M= M (6) briefly explain this connection and its consequences. If we
| l ™ | choose théunnormalized probability of the “pyramid” con-
figuration (5;=---=s,_1,=1, s,=0, L=2n) to be equal to
The Hamiltonian gives the time evolution in the vector spacel (this configuration has the smallest probabjlithen the
of the half-loop(RSOS configurations, normalization factor of the stationary st4®0] is equal to
_ d nt (2j+1)!(6j+3)!
=_§=1 (1—-e), &Pc(t):_%: HegPa(t).  (7) (0]0)= H 3 +2)(4}+2)!(4}+3)!. (12

P.(t) is the(unnormalized probability to find the system in  This is preciselyA,(2n+1), the number of configurations
the configurationc at the timet andr.q=—H¢q give the of the FPL model on the rectangle. Moreover, thenormal-
rates of our model for the transitioms—c. SinceH is an  ized) probabilities for the other half-loop configurations are
intensity matrix §.H.q=0) [11], it has a zero eigenvalue integer numbers, which are equal to the numbers of configu-
with a trivial bra and a nontrivial ket, which gives the prob- rations of the FPL model with the external occupied edges
abilities in the stationary state, connected in the same way as in the configuration of half
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loops[21,11]. This implies that the PDF describing the sta- o L L.
tionary distribution in the RSOS configurations space corre- F o S Eigg ]
sponds to a uniform probability distribution in the space of T e
the FPL model, or equivalently the ice model. The RSOS T
configuration with the largesiunnormalized probability is os| T
the one with the longest terracs; & - - - =s,. =0), in which ..
the interface coincides with the substrate. The normalized
PDF is, obviouslyp.=P./(0|0). oo .

We now describe some properties of the model. They x
were obtained either numerically for lattice sizes upLto B
=18 or an exact expression was conjectured and checked up |

to L=18. We start with the properties of the stationary state. ek o1 am sz om a5 om o1 e os /L
The fraction of the interface covered by terrag2g| is
L1 ) FIG. 1. Avalanche scaling functioR(v/L). The data are ob-
1 3L°—2L+2 tained forv>1 andL=S8, ...,18.
T(L)—L—E |Sj|>=m- (13
applies, this ratio should converge to a functiontkf. We
This implies that for largé., three quarters of the surface is have checked that this is indeed the case.
covered by terraces. We now consider the number of clusters We now consider the avalanches in our model. If in the
per configurationCzE _10(h;). Its average and the aver- stationary state, one considers the configuratiavith u(d)

age of its square have the followmg expressions: tiles, it changes with rate.y into the configuratiorc with
. u(c) tiles. The rate of changes, in whichtiles are lost can
(2j+1)(3j+4) 1 be written as
C)=zl] ———+—---~07382% (14
©=3ll e 3 a4
R(u,L)= Slu(d)—u(c)—ulregPgq- (18
(C?)~(1.29-0.49. 7983 (C)2. (15) c#d

We have found the following values for the rate of adsorp-
tion of one tile,R(u=—1,L), and the rate of all possible
avalanchesR(u>0,L):

From Eq.(15), we deduce that the compressibiliB3] of the
gas of cluster&~0.29 diverges like the size of the system.

The average heigi‘(tﬁ) and interface widthw,,, which

characterizes the roughness of the surface in the stationary 3L(L—2)
state, R(=1L)= 22L+1)’ (19
L
1 —
EZ w.=V(h?-h? (16) R(u>0L)=L—-2-2R(—1,L). (20
Notice that for largd., the rate for the adsorption of one tile
are compatible with the following behavior: (u=—1) is 3/2 times larger than the rate for an avalanche

. (u>0). This explains the relative rarity of the desorption
(h)~0.141In(L/2), w,~0.34InL/2)'?2 (17)  events.
Since through desorption, one loses an odd number of
This implies that the PDF of the heights has a very smaltiles, it is convenient to writel=2v — 1 and to considey as
dispersion and also that the usual expong¢hise=p8 van-  the size of an avalanche. Given the occurrence of an ava-
ish. As in any fit involving logs, the formulas given in Eq. lanche, its size is distributed according to the PDF,
(17) are probably not the last word. What is certain is that the
width grows slowly with the size of the system implying that R(2v—1L)
the surface is only marginally rough. It is interesting to men- S(v,L)= m (21
tion that marginally rough surfacesvith z=1.581 corre-
sponding to the directed percolation universality clagere  FSS[4] predicts the following form for this PDF:
also encounteref4] at a critical point dividing a moving
rough Kardar-Parisi-Zhang phase from a smooth, massive S(v,L)=v "F(v/LP). (22
phase. In these models, a factor 3 between the powers of the
logs [like in Eq. (17)] was also seefi25]. The factor 3 is One way to get the exponents of the FSS function is to
typical of a large class of growth problerf26]. To complete ~ consider the momen{7],
the interface growth picture, we calculated the ratio of the
time dependent interface widtw(t,L) to w, for various Ky _ K ok
lattice sizes. The curves were obtained by solving on a com- (= Z 0*S(v.L)~ L7, 23
puter the differential equatior(¥) taking the substrate as the
initial configuration. Ifz=1 and if the Family-Vicsek scaling and one expects
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0, k<7—1 class. We have also shown the connection between the model
(24 and a LCFT withc=0, which among other things implies
+1- >7—1. . '
Dk+1=m), k>r-1 that the dynamic exponet=1. Several FSS exponents of
From Eq.(20), one getgv)=(5L+4)/4(L+2), which im-  expectation values have been computed in the stationary

plies that for largel the average size of an avalanche is 3/2state but their identification with the scaling dimensions of
tiles. A numerical investigation of the other moments for 1the LCFT has not been completed. The FSS exponents of the
<k=5 indicateso(k)=k—2. This impliesD=1 and r avalanche PDF have also been determined. Much is still to
~3. The numerics can be quite precise even if we have datde understood in this model, such as correlation functions
for L up to 18. This is because we kn®(v,L) exactly and and its off-critical behavior. We hope to come back to these
we can use Van den Broeck—Schwartz approximp28$to  topics in a future publication.
derive the largé behavior of the momentshe convergence . ] )
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